Заметили ошибку в тексте?
Выделите её мышкой и
нажмите Ctrl + Enter

Сайт о паранормальных явлениях и уфологии

Паранормальные новости, новости НЛО, аномальные явления


Если Вы стали очевидцем НЛО или любого другого паранормального явления, или у Вас есть история из жизни связанная с необъяснимыми явлениями, то присылайте материал на e-mail: info@salik.biz или регистрируйтесь на сайте и разместите свою историю сами.

Магнитные и электрические поля человека

Фото:
Авторство неизвестно
Магнитные и электрические поля человека

Электрическое поле человека существует на поверхности тела и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов — они стекают с высокоомной поверхности кожи с характерными временами ~ 100 — 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом. Отметим, что этот сигнал ни много раз меньше, чем поле трибозарядов.

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое напряжение частотой — 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла. В норме она должна быть симметрична относительно грудины. Ее симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. Основной прогресс в этих исследованиях обусловлен применением вычислительной техники, в том числе персональных компьютеров. Они позволяют получать электрокардиограммы высокого разрешении (ЭКГ ВР).

Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше, причем сигнал маскируется электрическим шумом, связанным с нерегулярной мышечной активностью. Поэтому применяют метод накопления — то есть суммирование многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и так для многих сигналов в течение нескольких минут. При этой процедуре полезный повторяющийся сигнал увеличивается, а нерегулярные по мехи гасят друг друга. За счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза риска мгновенной смерти.

В электроэнцефалографии, используемой для целей нейрохирургии, персональные компьютеры позволяют строить в реальном времени мгновенные карты распределения электрического поля мозга с использованием потенциалов от 16 до 32 электродов, размещенных на обоих полушариях, через временные интервалы порядка нескольких мс.

Построение каждой карты включает в себя четыре процедуры:

1) измерение электрического потенциала во всех точках, где стоят электроды;

2) интерполяцию (продолжения) измеренных значений на точки, лежащие между электродами;

3) сглаживание получившейся карты;

4) раскрашивание карты в цвета, соответствующие определенным значениям потенциала. Получаются эффектные цветные изображения. Такое представление в квазицвете, когда всему диапазону значений поля от минимального до максимального ставят в соответствие набор цветов, например от фиолетового до красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ сложных пространственных распределений. В результате получается последовательность карт, из которой видно, как по поверхности коры перемещаются источники электрического потенциала.

Персональный компьютер позволяет строить карты не только мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые давно апробированы в клинической практике. К ним в первую очередь относится пространственное распределение электрической мощности тех или иных спектральных составляющих ЭЭГ (α, Я, γ, δ, и θ-ритмы). Для построения такой карты в определенном временном окне измеряют потенциалы в 32 точках скальпа, затем по этим записям определяют частотные спектры и строится пространственное распределение отдельных спектральных компонент.

Карты α, δ, Я ритмов сильно отличаются. Нарушения симметрии таких карт между правым и левым полушарием может быть диагностическим критерием в случае опухолей мозга и при некоторых других заболеваниях.

Таким образом, в настоящее время разработаны бесконтактные методы регистрации электрического поля, которое создает тело человека в окружающем пространстве, и найдены некоторые приложения этих методов в медицине. Контактные измерения электрического поля получили новый импульс в связи с развитием персональных ЭВМ — их высокое быстродействие позволило получать карты электрических полей мозга.


Магнитное поле человека

Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало — 10 млн. — 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемы и с катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо ох ладить до температуры, при которой появляется сверхпроводимость, т.е. до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия — криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека.

В последние годы после открытия «высокотемпературной сверхпроводимости» появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К). Их чувствительность достаточна для измерения магнитных полей сердца.

Магнитное поле, создаваемое организмом человека, на много порядков меньше, чем магнитном поле Земли, его флуктуации (геомагнитный шум) или поля технических устройств.

Существуют два подхода к устранению влияния шумов. Наиболее радикальный — создание сравнительно большого объема (комнаты), в котором магнитные шумы резко уменьшены с помощью магнитных экранов. Для наиболее тонких биомагнитных исследований (на мозге) шумы необходимо с шикать примерно в миллион раз, что может быть обеспечено многослойными стопками из магнитомягкого ферромагнитного сплава (например, пермаллоя). Экранированная комната — дорогостоящее сооружение, и лишь крупнейшие научные центры могут позволить себе се сооружение. Количество таких комнат в мире в настоящее время исчисляется единицами.

Есть и другой, более доступный способ ослабить влияние внешних шумов. Он основан на том, что в большинстве своем магнитные шумы в окружающем нас пространстве порождаются хаотическими колебаниями (флуктуациями) земного магнитного поля и промышленными электроустановками. Вдали от резких магнитных аномалий и электрических машин магнитное поле хотя и флуктуирует со временем, но пространственно однородно, слабо меняясь на расстояниях, сравнимых с размерами человеческого тела. Собственно же биомагнитные поля быстро ослабевают при удалении от живого организма. Это означает, что внешние поля, хотя и намного более сильные, имеют меньшие градиенты (т.е. скорость изменения с удалением от объекта), чем биомагнитные поля.

Приемное устройство прибора со сквидом в качестве чувствительного элемента изготовляется так, что оно чувствительно только к градиенту магнитного поля, — в этом случае прибор называют градиометром. Однако часто внешние (шумовые) поля обладают все же заметными градиентами, тогда приходится применять прибор, измеряющий вторую пространственную производную индукции магнитного поля — градиометр второго порядка. Такой прибор можно применять уже в обычной лабораторной обстановке. Но все же и градиометры предпочтительно применять в местах с «магнитно-спокойной» обстановкой, и некоторые исследовательские группы работают в специально сооружаемых немагнитных домах в сельской местности.

В настоящее время интенсивные биомагнитные исследования ведутся как в магнитоэкранированных комнатах, так и без них, с применением градиометров. В широком спектре биомагнитных явлений есть много задач, допускающих разный уровень ослабления внешних шумов.

Источник:
0
76

Комментарии

Нет комментариев. Ваш будет первым!
Загрузка...
Читайте еще
Пишут в блогах
Интересное видео
Новые комментарии
SALIK
SALIKАнгел или призрак 1 час назад
Статья об этой фотографии здесь.
SALIK
SALIKБирюзовый НЛО 3 часа назад
Подробнее здесь.
Контакт случится, скорее всего, через 100-200 лет,...
Огурцы взял, грибочков сестре подкинул. Он не халя...
Givi
Забавно, я думал это квадрат в небе загадочный НЛО...