Заметили ошибку в тексте?
Выделите её мышкой и
нажмите Ctrl + Enter

Альтернативный взгляд

«Альтернативная история, уфология, паранормальные явления, криптозоология, мистика, эзотерика, оккультизм, конспирология, наука»

Мы не автоматический, тематический информационный агрегатор

Статей за 48 часов: 109

Сайт для здравомыслящих и разносторонне развитых людей


Очевидец: Если Вы стали очевидцем НЛО, с Вами произошёл мистический случай или Вы видели что-то необычное, то расскажите нам свою историю.
Автор / исследователь: У Вас есть интересные статьи, мысли, исследования? Публикуйте их у нас.
!!! Ждём Ваши материалы на e-mail: info@salik.biz или через форму обратной связи, а также Вы можете зарегистрироваться на сайте и размещать материалы на форуме или публиковать статьи сами (Как разместить статью).

Новая технология IBM позволила ускорить обучение ИИ в 4 раза
Среднее время прочтения:

Новая технология IBM позволила ускорить обучение ИИ в 4 раза

Вычислительная эффективность искусственного интеллекта — это, своего рода, палка о двух концах. С одной стороны он должен обучаться довольно быстро, но чем больше «ускоряется» нейросеть — тем больше она потребляет энергии. А значит может стать попросту невыгодной. Однако выход из ситуации может дать IBM, которая продемонстрировала новые методы обучения ИИ, которые позволят ему обучаться в несколько раз быстрее при том же уровне затрат ресурсов и энергии.

Для достижения таких результатов IBM пришлось отказаться от методов вычисления с использованием 32-и 16-битных техник, разработав 8-битную технику, а также новый чип для работы с ней.

«Грядущему поколению приложений для работы ИИ потребуется более быстрое время отклика, большие рабочие нагрузки и возможность работать с несколькими потоками данных. Чтобы раскрыть весь потенциал ИИ, мы перепроектируем все аппаратное обеспечение полностью. Масштабирование ИИ с помощью новых аппаратных решений является частью программы IBM Research по переходу от узкогопрофильного ИИ, часто используемого для решения конкретных, четко определенных задач, к многопрофильному ИИ, который охватывает все сферы.» — заявил вице-президент и директор лаборатории IBM Research Джеффри Вельзер.

Все разработки IBM были представлены в рамках NeurIPS 2018 в Монреале. Инженеры компании рассказали о двух разработках. Первая носит название «глубокое машинное обучение нейронных сетей с помощью 8-разрядных чисел с плавающей запятой.» В нем они описывают, как им удалось так снизить арифметическую точность для приложений с 32 бит до 16 бит и сохранить ее на 8-битной модели. Эксперты утверждают, что их техника ускоряет время обучения глубоких нейронных сетей в 2-4 раза по сравнению с 16-битными системами. Вторая разработка «8-битное умножение в памяти с проецируемой памятью фазового перехода». Здесь эксперты раскрывают метод, который компенсирует низкую точность аналоговых микросхем ИИ, позволяя им потреблять в 33 раза меньше энергии, чем сопоставимые цифровые ИИ-системы.


«Улучшенная точность, достигнутая нашей исследовательской группой, указывает на то, что вычисления в памяти могут обеспечить высокопроизводительное глубокое обучение в средах с низким энергопотреблением. Как и с нашими цифровыми ускорителями, наши аналоговые чипы предназначены для масштабирования и обучения ИИ и вывода через визуальные, речевые и текстовые наборы данных и распространяются на многопрофильный ИИ.»

Владимир Кузнецов

Источник:
Записал:

SALIK

Санкт-Петербург
info
+45
Я не автоматический, тематический информационный агрегатор! Материалы Salik.biz содержат мнение исключительно их авторов и не отражают позицию редакции.

Поделиться в социальных сетях:


Оцените статью:
145
RSS
Нет комментариев. Ваш будет первым!
Загрузка...

   Наш чат ВКонтакте:   Войти в чат



Высший разум рекомендует
Пишут в блогах
Смотрите видео